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A number of initial- and boundary-value problems for the Boussinesq equations 
are solved by a finite-difference technique, in an attempt to see how a stably- 
stratified horizontal shear layer rolls up into horizontally periodic billows of 
concentrated vorticity, such as are frequently observed in the atmosphere and 
oceans. This paper describes the methods, results and accuracy of the numerical 
simulations. The results are further analysed and approximately reproduced 
by a simple semi-analytic model in Corcos & Sherman (1976). 

1. Introduction 
There is a substantial accumulation of experimental evidence, recently 

reviewed by Thorpe (1973) and by Maxworthy & Browand (1975), whichindicates 
that Kelvin-Helmholtz waves are a commonly occurring dynamic feature of the 
small-scale motions in the oceans and atmosphere. 

Woods & Wiley (1972) identify the late stages in the process of Kelvin- 
Helmholtz instability with the formation of ‘ billow turbulence ’, and assert that 
‘mixing in the interior (i.e. away from boundary layers) of all statically stable 
fluids is mainly due to billow turbulence’. Garrett & Munk (1972) make a milder 
statement; but they formulate statistical estimates of vertical and horizontal 
mixing rates in a model which couples an observed spectrum of internal waves 
for the ocean with the notion that these waves provide the shear necessary to 
excite the Kelvin-Helmholtz instability. It seems to us that such attempts to 
parametrize mixing in a way which involves well-defined stability problems as 
‘building blocks’ are promising, and they clearly provide one motivation for the 
present study and for Corcos & Sherman (1976). A successful parametrization 
of this small-scale transport would be a valuable contribution to  our ability to 
predict larger-scale motions with a deterministic model, a fact which Iends 
practical motivation to this study and many others that are closely related. 

At a more abstract level, the results of this investigation may be compared 
with a variety of analytical predictions, to allow a closer evaluation of the 
effectiveness of the various approximations or assumptions upon which they are 
t Present address : Science Applications Inc., 1205 Prospect Street, La Jolla, California 92037. 



21 6 P. C. Patnaik, F .  X. Xherman and G. M .  Corcos 

based, or they may suggest new approximate models. One such model is developed 
in Corcos & Sherman (1976). 

The feasibility of numerical simulation of hydrodynamic instabilities of the 
sort which interest us here had been established previously, notably by Amsden & 
Harlow (1964), Zabusky & Deem (1971) and Christiansen (1973); but none of 
these authors dealt with the effects of density stratification. Laboratory experi- 
ments, in particular by Thorpe (1971), Delisi & Corcos (1973), Browand & Wang 
(1972) and Browand & Winant (1973), have provided much valuable information 
on the effects of stratification, but they do not easily yield data on velocity and 
vorticity fields, which are so important to the refinement of theoretical models. 

A nonlinear theory of hydrodynamic stability frequently focuses on one or the 
other of two questions: (i) What happens to a single unstable normal-mode 
disturbance as it grows to finite amplitude? (ii) What interactions occur between 
the various normal modes that coexist in an arbitrary initial disturbance? In 
a laboratory experiment, it  is hard to keep these questions separate, although 
the application of forced periodic disturbances can help. A numerical simulation 
allows us to separate or combine them almost a t  will, although i t  may, as in the 
present work, place fairly severe restrictions on the class of interaction experi- 
ments which can be studied. We have, however, been able to study the especially 
interesting case of the interaction of normal modes whose wavelengths stand in 
the ratio 2: 1. 

The present paper, which grew out of Patnaik (1973), starts with the speci- 
fication of an initial-value problem for the Boussinesq equations. To gain 
computational simplicity, we follow Amsden & Harlow, Zabusky & Deem, and 
Christiansen in requiring that the flow be two-dimensional and periodic in the 
horizontal co-ordinate. Thus the instability, like that in the tilting-tube experi- 
ments of Thorpe, grows in time, not in distance downstream. The differential 
equations, initial conditions, and parameters of the problem are presented in Q 2. 

The finite-difference techniques and the numerical errors associated with their 
use are very briefly described and discussed in Q Q  3 and 4. 

The results are described in Q 5, and discussed, with some brief comments on 
prior theoretical work, in Q 6. 

2. The mathematical model 
We are interested in flows in which density variations are small, being dynamic- 

ally important only in connexion with the gravitational body force. We suppose 
that the density of a given flnid particle depends solely on a single diffusing 
property such as temperature or salinity, and that the rate of density change is 
so small as to leave the velocity field solenoidal. Thus we base our simulation 
on the familiar Boussinesq equations. 

Considering only strictly two-dimensional flows, and selecting Cartesian 
co-ordinates in which x increases horizontally and y increases vertically upwards, 
we write 
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FIGURE 1. Base flow profiles at initial time. 
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The kinematic viscosity v, the diffusion coefficient for density changes ,8, and the 
mean density for the flow field of interest po are alI taken to be constant. 

We wish to study the instability of an isolated horizontal layer, across which 
the horizontal velocity and fluid density change from - U to  f U and from 
po + 4Ap  to po - SAP as the layer is crossed from below to above. The density 
difference is gravitationally stabilizing (i.e. A p  > 0). 

The specific ‘base flow’ to which the initial perturbations were added was 
that which would be brought about by molecular diffusion from initial coplanar 
discontinuities of density and horizontal velocity at y = 0. Thus the base-flow 
profiles are 

u = U erf (n*y/26), p = po - 0.5Ap erf ((nPr)* y/26). 

These introduce Pr = v/p,  and define 6 as half the maximum-slope thickness 
of the base-flow velocity profile, at  time t = 0. 

(See figure 1.) 
We do not think that the exact shape of these profiles has much effect on the 

subsequent development of the flow, but it is important that, in all cases we ran, 
Pr was small enough that the local Richardson number 

6 = ~ / ( d U / d Y  ) m a r  
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TBLE 1. Parameters of the simulations. For all cases Pr = 0.72. -7 Extended run. $ Run 
at two different initial amplitudes. * Apparently neutral or slightly stable. 8 Interaction 
runs. 

reached a single minimum at y = 0. Thus the waves that appear here are of the 
type which Browand & Wang (1972) aptly called Rayleigh waves. 

To the base flow we added an initial disturbance, which is an unstable eigen- 
solution of the Taylor-Goldstein equation, adjusting the amplitude of the 
disturbance so that the maximum initial slope of any curve of constant density 
assumed a prescribed value (usually - 0.2, occasionally - 0.1). The necessary 
eigensolutioiis were generated by the numerical techniques employed by Michalke 
(1965). Again, we do not expect that the exact form of the initial disturbance has 
much effect on the finite amplitude stages of development. 

For all times, we impose boundary conditions that require the disturbances 
to be periodic in x and to vanish as IyI -too. In the numerical simulation, the 
velocity and density perturbations are required to vanish at 1 yJ = 0.625h, where 
h is the wavelength of the disturbance. It was found that application of these 
boundary conditions a t  larger values of IyI only wasted computer time and 
storage, without measurably influencing the computed results. 

Aside from the Prandtl or Schmidt number, VIP, the primary effect of which is 
seen in the relative thicknesses of the initial shear layer and pycnocline, each 
simulation is characterized by the following parameters: 

Reynolds number 

Minimum Richardson number 
Re = USIv; 

(where g ,  _= gAplp,,); and dimensionless disturbance wavenumber 

a = 2nS/h. 

This particular set of parameters is chosen because of its common appearance 
in the linear theory, although we shall see that h is for some purposes a better 
reference length than 6 for the scaling of buoyancy forces in the nonlinear 



Finite amplitude Kelvin-Helmholtz waves 219 

development of vigorous instabilities. We shall also use AlU as a scale for time 
in the presentation of results. 

Table 1 presents the combinations of parameters for which simulations were 
made. They explore the ranges of Re, J and a that permit initial instability, and 
within which variation of each parameter has a substantial effect on the large- 
scale features of the disturbed flow. It would have been of considerable physical 
interest to explore the effects of higher Reynolds number on the smaller-scale 
features of the instability, but we could not afford to employ the very fine 
computational mesh required to give a faithful rendering of these details. 

3. The numerical simulation 
The domain 0 < x 9 A, - 0.625A < y < 0.625A was subdivided by a rectangular 

mesh, with 32 equal increments of x. Most runs made with 56 increments of y, 
the outer 24 being equal to the x increment, while the inner 32 were half that 
size. Velocity components, densities and pressures are all defined a t  the mesh 
intersections. All x derivatives were represented by second-order centred 
differences; so were all y derivatives, except those at the top and bottom 
boundaries, where second-order one-sided differences were used. 

The algorithms employed are basically those of Chorin (1968). In  short, 
Chorin’s method employs the primitive variables, u, v ,  p, and p ,  and marches 
forward in time in the following manner. 

E r s t  u, v and p are advanced through a time step At to auxiliary values, under 
the influence of convection, diffusion and gravity, but ignoring the effect of 
pressure forces. This step is taken implicitly in time, using the Peaceman- 
Rachford (Alternating-Direction-Implicit) algorithms. 

This completes the advancing of p, but the auxiliary values of u and v do not 
satisfy the continuity equation, and p has not yet been advanced at  all. The latter 
two shortcomings are simultaneously overcome by an iteration process, in which 
the difference between successive iterates for p is set proportional to the local 
value of V.  u at that stage of the iteration, while each new iterate for u or v is 
found by adding to the corresponding auxiliary value an increment due to the 
local value of the pressure gradient, evaluated from the current iterate for p .  

The method has been carefully analysed for stability and convergence by 
Chorin (1969). Further algorithmic and/or programming details may be obtained 
by direct correspondence with the f i s t  author. 

4. Accuracy of the simulation 
The accuracy of substituting the Boussinesq equation for a more complete 

version of the Navier-Stokes equations is well established in related problems 
such as free convection. What concerns us here are the numerical aberrations 
which are part of any finite-difference scheme for approximate solution of partial 
differential equations. 

Patnaik (1973) described a number of detailed checks made to ensure that 
the numerical procedures were free of systematic flaws, and that the x, y, and t 
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increments were small enough that the large-scale flow patterns shown here can 
be believed to be accurately represented. Rather than describe these tests here, 
we announce the good news that Patnaik has recently been able to reproduce 
these results very closely with a new set of algorithms which differs in almost 
every respect from those employed in his original work.? In  a typical run 
(Re = 100, J = 0.07, a = 0.43) the two numerical schemes give predictions of 
maximum billow amplitude, and of the time to reach it, which differ by only 
about 1 yo. 

To determine whether small-scale details revealed by the simulations are 
physically real, or numerical artifacts, is a much harder task. Details that vanish 
when the mesh is refined are presumably non-physical, but one is always left 
wondering about those remaining when the process of refinement has run up 
against financial or computer-capacity limits. 

A simple physical test, which was useful in our work, can be made on local 
values of the density. Equation (2.3), together with the boundary conditions, 
shows that p can never attain values more extreme than those appearing in the 
initial field. I n  barotropic two-dimensional flow we could make a similar statement 
about the vorticity, and even in our study, where baroclinic generation of 
vorticity is very important, we can sometimes spot unphysical vorticity values. 
Por example, since SZ (the vorticity) is initially everywhere negative, any positive 
values which appear a t  later times must be unreal unless they can be clearly traced 
to baroclinic generation. 

The principal fruit of these physical tests was to reveal that the profiles of very 
thin shear layers, which develop with time for many combinations of parameters, 
are distorted by ‘diffraction fringes’ of numerical origin if the true profile of the 
layer would have had to be resolved by less than about six or seven mesh points. 
Examples of this type of distortion are prominent near the left and right edges 
of figure 7(c). Suspicious wiggles of presumably similar origin can be seen in 
some of the vorticity maps of Zabusky & Deem.$ 

Finally, it will be recognized that most of our figures have been plotted by the 
computer. The plotting algorithms we employed can occasionally be fooled into 
representing a long narrow peninsula as a chain of islands. This phenomenon, 
which has no basis in the numerical output from the computer, is well illustrated 
in figure 4 (c). 

5. Results 
To describe partly the wealth of information provided by the numerical 

simulations, we depend heavily on maps of various flow quantities, plus curves 
that represent the time evolution of prominently observable local or integral 
quantities. 

t In the new scheme, which is rather like that of Zabusky BE Deem, u, v, p and p are 
defined on a staggered grid; ‘Arakawa differencing’ of convective derivatives is used; 
the f i s t  fractional time step is taken explicitly rather than implicitly; and the Poisson 
equation that arises as we advance the pressure is solved by Fast Fourier Transform rather 
than by relaxation. 

$ Look e.g. in about the middle of Zabusky & Deem (1971, figure 8 ( b ) ) .  
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5.1. Wave growth at early times 

While criticism of linear stability theory as applied to a time-dependent base 
flow was not our prime goal, we did compute a ‘wave energy’ from 

and observed that it grew approximately exponentially with time when it was 
small. This invited the comparison with ‘linear growth rates ’ shown in figure 2, 
in which the curves represent calculations kindly done for us by Maslowe, by 
the methods described by Maslowe & Thompson (1971). The ordinate in figure 2 
was found from 

d C i  6 d 
(In E). - =-- 

U 2Udt 

Several observations need to be made, lest this comparison be taken too 
seriously. In  the first place, we defined the ;il which appears in (5.1) by 

so that it is a property of the mean flow, rather than of the time-dependent base 
flow. Had our simulations been started a t  sufficiently small perturbation ampli- 
tudes, the mean flow and the base flow should have been indistinguishable. In  
fact, the mean flow ‘diffused’ in the y direction somewhat faster than did the 
base flow. 

Furthermore, the z variation of the disturbance departed noticeably from 
a simple sine wave during the time of approximately exponential growth of E,  
and a growth rate determined from the variation of the maximum elevation of 
the isopycnic surface p = po differed appreciably from the value found from E(t).  
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FIGURE 3. Isopycnic contours as function of time. R e  = 100, J = 0.07, a = 0-43, T E Ut/h. 
T: ( a )  0, ( b )  0.5, (c) 1.0, (d )  1.5, ( e )  2-0, (f) 2.42, time of maximum amplitude. 

We note that the range of E over which d(ln E)/dt is approximately constant 
was very small (only about 15 %), and conclude that our simulations do not begin 
with disturbances small enough so that a critical comparison can be made with 
linear theory. Finally, we remember that our initial perturbation is not a normal- 
mode solution of the linearized Boussinesq equations, but was derived from a 
linear theory which neglects viscosity and diffusive changes of density. Hence our 
solutions a t  very early times presumably involve a little reshaping of the initial 
perturbation. Thus, the comparison shown in figure 2 is neither strictly a test of 
the validity of linear theory, nor of the accuracy of the nodinear computations. 

One noteworthy qualitative feature of the solutions at early times is the nearly 
immediate eradication of the unphysical double maximum of vorticity, which 
appears aIong the deformed locus of the surface on which p = po when linear 
theory is used to describe an initial disturbance of fairly large amplitude and 
relative wavelength. (See e.g. Michalke 1965.) The tendency of our solutions 
(see e.g. the top two panels of figure 13) is to define a band within which the 
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vorticity is everywhere nearly equal to a single maximum which appears, if 
anywhere, at about x = +A, y = 0. This band is thinned at x = 0 and h and 
fattened at x = +A, and corresponds qualitatively very well with the early-time 
pictures sketched by Batchelor (1967) and exhibited in numerical simulations of 
Christiansen (1973).t 

5.2. General evolution of the $ow JieM during billow growth 

Figure 3 shows a sequence of isopycnic patterns for a wave which has the pre- 
ferred wavelength for fastest growth according to linear theory. The Reynolds 
number is high enough that isopycnic surfaces do not differ greatly from material 
surfaces during the time elapsed, and the pictures bear good qualitative resem- 
blance to what one sees in the laboratory with smoke or dye tracers. 

The prominent qualitative features of the process are the rolling-up of isopycnic 
contours in the region we shall subsequently call the cores, and the crowding of 
these contours along inclined bands, which we shall call the braids, that connect 
the bottom of one core to the top of the next. 

Stream function and vorticity are readily computed from mesh-point values 
of u and v. In  figure 4, contour maps for these quantities are compared with that 
for density, for the ‘climax’ state of maximum wave amplitude. 

The streamline pattern is of the cat’s-eye form at all times. The surface on 
whichp = po, which is darkenedin figure 4 ( a )  and dashed in 4 (b)  and ( c ) ,  coincides 
almost exactly with the departing branch of the dividing streamline that outlines 
the cat’s eye in 4 ( a ) ,  and with the crest line of the ridge of high vorticity values 
in 4(c), between the stagnation point at (0,O) and the point, x 2: &I, y = H ,  
at which all of these loci reach their maximum vertical displacement. This coinci- 
dence is not typical of the entire period of vigorous wave growth, during most of 
which the locus of the braid (whether defined byp = poor by a sectional maximum 
of vorticity) lies slightly inside the cat’s eye. 

By close inspection of figure 4 (c), we can make some interesting observations. 
These start with one which is unfortunately not documented in the figure, but 
which can be deduced from the simulation of Christiansen (1973), and which we 
have confirmed with the model presented in Corcos & Sherman (1976). However, 
we support the conclusion, it appears that virtually all the fluid that comprised 
the unperturbed shear layer has moved into the cores by the time the climax 
state is reached. Thus, the ‘topography’ of the vorticity field, in which high 
ridges (the braids) are separated from a high rounded hill (the core) by relatively 
low ‘cols’ or ‘passes’, is largely shaped by baroclinic effects. Virtually all the 
vorticity remaining in the braids has been baroclinically generated. The fluid 
bearing this vorticity follows that of the initial shear layer into the cores, but in 
so doing i t  assumes a configuration, in the area of the ‘passes’, where baro- 
clinicity produces vorticity of the opposite sign. Indeed, by noting that in the 
vorticity equation, which can be derived by cross-differentiation of (2.1) and 
(2.2), the baroclinic source term is equal to - (g/po)  ap/ax, we can make sense of 
the variation of !2 all along the locusp = po, which has been dotted into figure 4 (c) 

t See Batchelor (1976, p. 516); Christiansen (1973, figure 5, third psnel). 
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FIUURE 4. The climax states. Re = 100, J = 0.07, a = 0.43. (a )  Isopycnic contours ( p  21 p o  
darkened). ( b )  Streamlines (cat’s eyelid darkened). ( c )  Iso-vorticity contours. (Peak value 
in braid = - 10.8, peak value in core = - 9.5.) The contour p = po is dashed for reference 
in ( b )  and (c). 
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FIGURE 5. Kinematics of the braid. Re = 100, J = 0.07,a = 0.43. (a) Locus of the braid at 
various times. ( b )  Velocity along the braid at various times. 

for this purpose. Remember that this is a locus along which l2 would be constant 
if there were no diffusive mechanisms or baroclinicity. 

decreases slightly as distance from the stagnation 
point increases. This is consistent with a decreasing rate of baroclinic generation 
as the inclination of the braid decreases, although there are almost certainly 
other more subtle advective and diffusive effects. When the locus of p = po dips 
down, so that aplax changes sign, I i2l is decreased by baroclinic action, and this 
continues almost exactly to the point at which the locus starts to rise again. 
Thereafter, ll2l increases steadily until the locus makes a h a 1  dip in passing 
through the centre of the core. There is even a hint, in the hour-glass shape of 
the innermost equi-vorticity contour, that this h a 1  dip has had an effect. 

We may have placed undue faith in the numerical accuracy of local vorticity 
values in making the foregoing observations, or we may have strengthened that 
faith because the observations seem not unreasonable. In  any event, it  appeared 
from detailed studies of typical error patterns (the ‘diffraction fringes’ referred 
to  in 3 4) that an integral measure of braid vorticity, which we shall call the ‘braid 
shear’, 

Along the braid itself, 1 

S(X’ t )  = [cos O,(x, t,ls_;w Q ( X ,  Y, t )  dY 

may be reasonably accurate, because positive and negative local errors in i2 
approximately cancel. S(0, t )  gives an interesting characteristic of the braid, 
which can be predicted by the model in Corcos & Sherman (1976). 

We see from the streamline patterns, figure 4 ( b ) ,  that the braid is being 
15 FLM 73 



226 

I 

P .  C .  Patnaik, F .  S. Sherman and G.  M .  Corcos 

10H 
A 
- 

30" 

OB 

20" 

es 
10" 

I I 1 0  
0 1 2 

7 

FIGURE 6. History of braid properties. Re = 100, J = 0.07, a = 0.43. - , shear across 
braid at x = 0, SlU. ---, rate of stretching of braid at x = 0, (A/2U)  (aqlas). --, slope 
of braid at z = 0, OB. - . -, slope of departing streamline at 2 = 0,Os. . - , maximum eleva- 
tion of braid, 10HlA. 

stretched and thinned. Further observations, in particular of the straightness 
and slenderness of the braid, strongly suggest that this deforming motion is 
induced by the vorticity which is more or less concentrated in the cores, and 
not by the vorticity in the braid itself. (Obviously the boundary between braid 
and core is not sharp, and its location is fairly arbitrary. To be definite, let us 
take it a t  x = &+A, y = H . )  

Since the rate of stretching of the braid plays a key role in the model presented 
in Corcos & Sherman (1976), we present some data from this same case, in 
figure 5 .  The locus of the braid at various times is shown in figure 5(a ) ;  the 
corresponding distributions of velocity tangential to that locus are shown in 
figure 5 (b ) .  The rate of stretching (aqlas, where s is arc length along the braid) 
is roughly constant over about half the length of the braid, and varies little 
with time during the latter half of the rolling-up process. 

Finally, in figure 6, we show how various salient properties of the braid, and 
of the streamline with which it nearly coincides, vary with time, during the 
growth process shown in figure 3. The angle of the braid and of the streamline 
at (0,0), the rate of stretching of the braid at  that point, and the maximum 
vertical displacement of the braid grow in a roughly similar fashion, while the 
shear across the braid drops from its initial value to about 40 yo of that value. 
The braid shear that remains a t  T = 2.4 is essentially all of baroclinic origin in 
this case. 
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I 
FIUURE 8. Effect of Richardson number on the climax isopycnics. 

Re = 100, oc = 0-43. J :  (a )  0.03, ( b )  0.07, (c) 0.15. 
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FIGURE 9. Effect of wavelength on the climax isopycnics. 
Re = 50, J = 0.03. a: (a) 0.2, ( b )  0.43, (c) 0.7. 
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FIGURE 10. Effect of wavelength on braid displacement. 
R e  = 100. J,: 0, 0.03; a, 0.07; A, 0.15. 

5.3. Effect of parameters on the disturbance in the climax state 

All of the flow simulations in which the initial disturbance grew markedly were 
qualitatively similar to that just described. Their quantitative differences are 
indicated by the maps of isopycnic surfaces shown in figures 7-9, and by the 
data plotted in figures 10-12, all of which refer to the ‘climax’ state. 

Figure 7 indicates that diffusive mechanisms have little effect on the gross 
features of the instability, even for these moderately low Reynolds numbers, but 
that they determine, in a competition with advective effects, the thickness of 
the braids and the sharpness of density contrasts which persist in the core, where 
fluid from the original pycnocline is intertwined with entrained fluid. 

Figure 8 shows how gravitational stability stunts the growth of the billow, 
even well before J = 0.25. Figure 9 is in some ways the most startling, showing 
that nonlinear processes favour the development of waves longer than those 
that grow fastest in the linear range, while waves that grow slowly in the linear 
range because of their shortness stop growing at  very small amplitudes, and 
never develop the characteristic rolled-up appearance of longer waves. 

The effect of 01 on Hlh of the climax state is explicitly shown in figure 10, 
which should be compared with figure 2. At first glance, the data trends look 
almost identical, but closer inspection shows how nonlinear effects have favoured 
the growth of the longer waves. The interpolation curves have been brought to 
H / h  = 0 at a long-wave cut-off provided by Kelvin’s linear theory for a shear 
layer of zero thickness. This criterion, k = g,/2U2, becomes 01 = J / P d  after 
multiplication of both sides by 6. 

Figure 11 shows effects of Re and J on H / h  in the climax state. The principal 
features are the expected strong stabilizing effect of increasing Richardson 
number, and the relatively low values to which Re must drop before viscosity 
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FIGURE 11. Effects of Reynolds and Richardson number on braid displacement. a = 0.20. 
J:O,  0.03; A, 0.07. 01 = 0.43. J: 0, 0.03; A, 0.07; 0, 0.15; V ,  0.20. 

shows a strong stabilizing effect. We note particularly how uninfluential viscosity 
is when the disturbance wavelength is very long (i.e. when a is small). 

An additional, 'hidden ' parameter of these simulations is the amplitude of the 
disturbance at  r = 0. All runs represented in figures 4-11 were started with the 
same maximum initial slope ( - 0.20) of the mean-density surface. Because of 
diffusion, the stability characteristics of the base flow change with time. The 
Richardson number increases, which is stabilizing; the Reynolds number 
increases, which is destabilizing; and a increases, which is either stabilizing or 
destabilizing depending on whether a is the value for most rapid disturbance 
growth. In  two cases for which we made a test, disturbances that were initially 
weaker (maximum initial slope = 0.10) stayed weaker for all times. In  these 
cases, the effect of growing a was stabilizing. 

Although the climax states vary considerably in appearance, one of small 
amplitude tends to look rather like an intermediate state in a case destined to 
arrive a t  a larger amplitude. This suggests that some simplified kinematic model 
of the disturbed flow at any stage of development may be discovered, and that 
approximate correlations of fairly general utility exist between some important 
gross properties of the flow. One example is shown in figure 12, where the dimen- 
sionless shear across the braid midsection is plotted against the steepness ratio 
Hlh  for all the climax states represented in figure 11. A systematic small de- 
pendence on a is seen, but variations of Reynolds and Richardson number seem 
only to displace points along the correlation curves. The solid curve represents 
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FIGURE 12. Kinematic correlation of climax states. a: 0,  0.20; 0, 0.43. 

the kinematic model (Stuart 1967), of which use is made in Corcos & Sherman 
(1976). 

5.4. Late-time behaviour of a long wave 

It is clear, from a superposition of streamlines and isopycnic curves in the climax 
state, that this is not a state of permanent equilibrium, but that further dynamic 
developments must follow. These were traced out in one case, with results shown 
in figures 13-15. The superposed streamlines and equivorticity contours of 
figure 13 show the rapid development of a climax state, by about 7 E Ut/h = 1-3, 
and the subsequent relaxation, by r = 4.0, to a state which is nearly steady. 

The events which follow the climax state are complex, and the following 
attempt to describe them admittedly infers a great deal from a single simulation. 

We first try to unravel the roles of inertial, viscous and buoyancy forces, with 
the help of the equation 

dE/dt = P + B - E .  

Here E is the total disturbance energy defined in 3 5.1; P and B are the rates of 
production of E due to Reynolds stresses and buoyancy forces respectively; and 
B is the rate of viscous dissipation of E.  The quadratures defining P and B are 
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FIUURE 13. Flow evolution before and after the climax state. (1: = 0.2, Re = 25, J = 0.03. 
-, streamlines; ---, equivorticity lines. T: (a) 0, ( b )  0.5, (c) 1.0, (d )  1.5, (e) 1.75, (f) 2.0, 
(9) 2.5, (h) 3.0, ( i )  3.5, (j) 4.0. 
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FIUURE 14. Energy balance before and after the climax state. a = 0.2, Re = 25, J = 0.03. 
-, energy transfer by Reynolds stresses, P ;  --, energy transfer by buoyancy forces, B ; 
---, P+ B ;  ---, rate of change of ' eddy kinetic energy', dEld t ;  -. --, aspect ratio of cat's 
eye, Hlh. 

In  figure 14 we present P ,  B, P + B, dEldt, and H l h  as functions of time. We see 
that P is positive and B is negative while Hlh is growing. During this time the 
kinetic energy extracted from the mean shear flow appears both as kinetic energy 
of the disturbance and as increased gravitational potential energy. A significant 
amount of disturbance energy is lost to viscous dissipation, but the qualitative 
trend of dE/dt is only slightly influenced by viscosity. During the latter part of 
the rise of the wave to its climax amplitude, disturbance kinetic energy is traded 
for potential energy to a significant degree. 

In  the relaxation process following the maximum of Hlh, some potential 
energy is fed back into E,  and some of E is returned to the mean flow via the 
Reynolds stresses. By the time T = 4, P, B, and dEldt have all settled down to 
very small values, and the rate of viscous dissipation has become particularly 
small as the sharp gradients become smoothed away. 

It appears from this viewpoint that both the growth to the climax state, which 
features the rapid opening of the cat's eye and the entrainment of a considerable 
volume of fluid into this region of recirculating flow, and the subsequent relaxa- 
tion, which exhibits a partial closing of the eye and the loss of some fluid from 
the recirculating region, are essentially inviscid processes. It seems rather likely 
that the relaxation involves a damped oscillation, the decay rate of which is set 
by viscosity. The oscillation could involve a periodic exchange between kinetic 
and potential energy, or simply a kinematic effect due to the rotation, within 
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FIGURE 15. Flow evolution after the climax state. a = 0-2, Re = 25, J ,  = 0.03, Pr = 0-72. 
(a) Braid, [p(O,y,t)-po]/Apo. ( b )  Core, [ p ( ~ h , ? / , t ) - P o ] / A P o . T :  -, 0; 1.3; ---, 2.0; 
-.- , 4.0. 

the cat’s eye, of a slightly elliptical distribution of vorticity. The latter pheno- 
menon has appeared in the nominally inviscid-flow simulations of Zabusky & 
Deem (1971), who refer to i t  as a nutation. 

Figure 15 shows the density distribution in vertical sections through a braid 
and a core, a t  various times. The initial profiles in the two sections are nearly the 
same. As the wave grows to a climax, the braid profile hardly changes, because 
in this particular case diffusive thickening has almost exactly cancelled advective 
thinning. Meanwhile, large intrusions of heavy fluid on top of light, which would 
be even more dramatic in a case with higher Re, have developed in the core. As 
the relaxation proceeds, diffusion smooths away the density contrasts in the core, 
until a nearly constant density is achieved there by time T = 4. The braids have 
also thickened greatly during this time, but a careful inspection of isopycnic 
maps shows that this is not the results of local diffusion, but of advective intru- 
sions of fluid from neighbouring braids, which escaped entrainment into the 
intervening cores. 

5.5. Interaction between the fastest-growing wave and its Jirst subharmonic 

The clasri of wave interactions that can conveniently be simulated with periodic 
boundary conditions in x is fairly limited, but we studied one interaction which 
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FIGURE 16. Resonant interactions with subharmonics (isopycnics). a = 0.43 and 0.215, 
Re = 50, J ,  = 0.07, Pr = 0.72. (a) Rolling interaction. (b )  Shredding interaction. 
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appears frequently in laboratory studies,t and which seems to play a particularly 
important role in the growth of shear layers by entrainment. This is the inter- 
action between the normal mode which grows fastest in the linear range and its 
first subharmonic. We could simulate this by doubling the horizontal length of 
our computational domain and adding an appropriate subharmonic disturbance 
into the initial conditions. This required a choice of the relative amplitudes and 
phase of the two disturbance components. 

Figure 16 shows the evolving isopycnic patterns for two such simulations, in 
which mS = 0.43, maximum initial slope of an isopycnic = - 0.16, cc, = 0.215, 
maximum initial slope of an isopycnic = -0.014. The other parameters are 
J = 0.07, Re = 50. The non-dimensional time T is formed with the shorter wave- 
length. The ratio of initial amplitudes was selected to reflect the faster growth of 
the shorter wave in the linear range, on the assumption that both waves were 
equally excited at T N - 30, with ‘infinitesimal’ initial slopes of about - 5 x 

The interaction simulations involved four computer runs. First, each com- 
ponent wave was allowed to develop alone, from the initial amplitude given 
above. Then the two waves are superposed in the initial data, first with the core 
of the long wave midway between the corea of the short wave, resulting in the 
flow shown in figure 16 (a) ,  and again, with the core of the long wave centred on 
the left-hand core of the short wave (figure 16b). 

The action of the long wave on the short is fundamentally different in the two 
combined-wave cases. In  figure 16 (a )  the cores of the short wave are in locations 
where the long wave induces a simple pivoting translation around the centre 
of the picture, with very little straining motion. In  figure l 6 (b )  the right- 
hand core of the short wave is caught in the strain field midway between the 
incipient cores of the long waves and is eventually shredded away by that 
straining motion. In  both cases, the short wave is eventually annihilated by its 
subharmonic. 

5.6. Secondary, smaller-scale instabilities 

I n  none of our simulations was there any indication of the onset of secondary, 
smaller-scale instabilities, either in the cores, where there are statically unstable 
regions, or in the braids, where a shear-driven instability of the Kelvin-Helmholtz 
type would be a possibility. 

It is probably true that such instabilities are not to be expected at these rather 
low Reynolds numbers. For similar Reynolds numbers in a wind-tunnel experi- 
ment, Delisi & Corcos (1973) reported no signs of turbulence, although this does 
not quite rule out the possibility of small-scale instabilities, which might have 
reached a nearly identical state of development in each full-scale billow at the 
time it passed the measuring station. 

It is almost certainly true that, even if such instabilities are physically possible 
within our range of overall parameters, they would not be revealed by our 
calculations because: (i) our initial data are unphysically free of small-scale 
perturbations; and (ii) our discrete space and time steps are too coarse to reveal 
instabilities on a scale much smaller (say perhaps 5 times smaller) than that of our 

t See e.g. Browand & Wmg (1972) or Winant & Browand (1974). 
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primary disturbances. For example, unphysical damping of numerically- 
simulated Tollmien-Schlichting waves, as a result of an excessively large time 
step, was documented by Fasel(l974). 

P. C. Patnaik, F.  X. Sherman and G .  M .  Corcos 

6. Summary and conclusions 
Out of all the detailed information the numerical simulations provide, we can 

extract some qualitative generalities, some of which are synthesized into an 
approximate theoretical model in Corcos & Sherman (1976). Others escape a 
simple theoretical description, but are of some intrinsic interest. 

Concerning the growth of isolated normal modes, we observe the following. 
(i) Growth a t  small amplitudes is in fair agreement with the predictions of a 

linear theory which assumes a parallel and time-independent base flow. System- 
atic deviations seem to lie in a direction which might be predicted by applying 
the linear theory to a quasi-steady base flow. 

(ii) Growth is self-limiting because of the finite supply of vorticity available 
to a wave of fixed wavelength, and the necessary sharing of this vorticity, in 
baroclinic flows, between the cores and the braids. 

(iii) Parametric variations (decreasing Re, increasing J ,  increasing a beyond 
0-43) that inhibit wave growth in the linear range, also restrict the development 
of large maximum wave amplitudes. The unifying aspect of all these effects is 
that they inhibit (each in a distinctive way) the coalescence of vorticity into 
relatively compact cores. A related result is that relatively long waves, which 
coalesce vorticity very efficiently, grow much more impressively in the nonlinear 
range than would be expected by extrapolation of linear theory. 

(iv) To a remarkable extent, states of small maximum amplitude resemble 
states through which the flow passes when a more favourable set of parameters 
allows further growth. 

(v) The state of maximum amplitude (the climax state) is not one of equi- 
librium, but appears to represent the overshooting of a more stable state, to 
which the flow relaxes in a time comparable with that required to reach the 
climax. This relaxation may actually involve a damped oscillation, only the 
f i s t  cycle of which was visible because of low Reynolds number. 

There has been relatively little analytical work devoted to the nonlinear 
stages of this problem, an exception being the work of Maslowe (1973). Following 
the ideas of Benney & Bergeron (1969), he found steady solutions of the Bous- 
sinesq equations which somewhat resemble the state towards which our waves 
relax after reaching maximum amplitude. Maslowe’s theory involves asymptotic 
representations for high Reynolds number, presumably about an order of 
magnitude higher than those employed here, but perhaps within the range of 
accurate application of a specially-designed finite-difference simulation. 

For barotropic flows, other types of asymptotic representations have been 
worked out for the free shear layer by Schade (1964) and Robinson (1974). The 
two lines of development are in some respects conceptually distinct, but they 
both embody the assumption that the dimensionless wavenumber a is close to 
one. This is in a sense an unfortunate point of departure for an asymptotic 
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expansion, since, if our results for a = 0.6 and 0.7 are at all indicative of the 
general behaviour of relatively short waves, such waves are individually of com- 
paratively slight practical interest. (That is to say, they contribute very little to 
entrainment, and to subsequent mixing and thickening of the shear layer.) 

Concerning the interaction of normal modes with one another, we make the 
following limited observations. 

(vi) Within a limited range of stable stratification, that wave which grows 
most rapidly in the linear range will eventually be absorbed by its first sub- 
harmonic. This is likely to happen rather shortly after the shorter wave reaches 
its climax state, unless the initial state is unusually free of subharmonic content. 

(vii) The kinematics of this subharmonic interaction depend dramatically 
on the phase relationship in which the two waves are initially superposed. In  the 
more dramatic, ‘pivoting’, interaction, a significant amount of entrainment 
occurs. Seemingly this is somewhat more than would occur if the subharmonic 
wave grew alone. 

A quantitative discussion of even this very limited class of interaction experi- 
ments is difficult, and we have decided to leave it for another paper, for which we 
are now accumulating computational data. 

We are grateful to the National Science Foundation for partial support of 
this work under grant GA-35783 to the University of California, and for their 
support of the National Center of Atmospheric Research, where the additional 
computations represented in figures 13-16 were performed. We also thank 
Professor Alexandre Chorin for encouragement at crucial times. 

Note added in proof. We should also like to draw readers’ attention to recent 
work of Takata (1975), who used a modal rather than a finite-difference 
representation of x variations. His results would be of interest to those 
interested in the present paper. 
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